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In  this short note we use the results of numerical solutions of the unsteady 
Navier-Stokes equations to study the occurrence of separation in unsteady flow. The 
structure of a flow cycle depends strongly on the Strouhal number, whose value can 
be classified as small, intermediate or large. In  each of these regions different effects 
are calculated, and we give guidelines for the boundaries of these regions. In  
particular, we show that the small-Strouhal-number region, in which quasi-steady 
flow is observed, is very small and decreases rapidly as the peak Reynolds number 
increases. 

1. Introduction 
In  dealing with an unsteady flow there are two fluid-dynamic parameters which 

characterize the nature of the flow. One is the peak Reynolds number, which in steady 
flow is an indicator of the relative importance of inertial and viscous effects. When 
the flow is unsteady the relative importance of these two effects is not constant 
throughout the cycle and a second parameter is used to describe the flow. This is the 
Strouhal number, and its value is an indication of the relative importance of unsteady 
and steady accelerations within the fluid. The most attractive method of developing 
an asymptotic theory of unsteady separation is to assume that if the Strouhal number 
is small enough, unsteady effects will be negligible and one can use as a basis the theory 
of steady separation. Asymptotic solutions of the unsteady equations have been 
attempted by Smith (1979), Duck (1979), Sychev (1979), Secomb (1979) and Cowley 
(1981). The intention of this note is to illustrate the limitations of quasi-steady theory 
by presenting purely numerical solutions of the Navier-Stokes equations at moderate 
Reynolds number. 

The idea of quasi-steady flow is then that at a particular time in the flow cycle 
one can use the steady-flow solution calculated a t  the instantaneous Reynolds 
number. Thus the Strouhal number disappears from the leading-order term in the 
solution. This is best demonstrated by reference to the equations of motion. If Re, 
is the peak Reynolds number and St the Strouhal number, the equation for the 
non-dimensional velocity u and pressure p is 

au 1 
St- + ( u * V ) u  = -vp+ -v2u. 

at Re, 

Let the time dependence be represented by some function q(t) ,  where for instance q 
might be the flux through a channel. The instantaneous Reynolds number is 

Re(t) = Re,q(t). (2) 
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Provided the Strouhal number is sufficiently small for us to  neglect the unsteady term, 
we scale u by qu, and p by q2p, to  obtain 

1 
( U , ' V ) U ,  x -vp,+ -V%l,. 

Re@) 
(3) 

Thus us and p ,  are given by the solution of a steady equation a t  the instantaneous 
Reynolds number Re(t), and time only enters the equation in a parametric form. The 
neglected term St aulat should be examined further, for if u z u,(x; Re(t)) then the 
neglected term is actually 

St qu, + St q - q Re,, 
aRe 

which can be written as 

q 

In  the normal course of events we have specified that St 4 1, and we would expect 
au,/aRe to be small. This is not true when separation occurs, for then the velocity 
will change rapidly as the Reynolds number varies. Hence, in a flow that separates, 
we would expect the criterion for quasi-steady flow to be much more restrictive than 
St 4 1 and to involve ReStau,/aRe 4 1. Since the Reynolds number is likely to be 
large, the Strouhal number may need to be very small indeed. The need to combine 
the Strouhal number with the Reynolds number in deciding where quasi-steady 
theory is applicable has been observed by Cowley (1981) and Sychev (1979). 

The results we report below use oscillatory flow through a furrowed channel to 
illustrate these ideas. Although the results are for a specific geometry we believe the 
structure of the flow cycle will be similar for other geometries. If (2,fJ) are 
two-dimensional Cartesian coordinates, we suppose the boundaries of a channel are 
given bv 
Y 

fi = +_ h { 1 + i D  (1 - c o s y ) }  . 

Non-dimensional coordinates are defined by 

(4) 

where t̂  is the time. I n  this geometry the minimum channel gap is 2h and the hollow 
length and depth are Lh and Dh respectively. If the frequency of oscillation is SZ and 
the peak flux 2Uh the instantaneous flux is 

@(f) = 2Uhsin 27tSZf. (6) 

Define the non-dimensional flux to be q = 2sin27tt. The Reynolds and Strouhal 
numbers are given by - 

Uh SZh 
U U 

Re, = -, St = -, (7) 

where u is the kinematic viscosity of the fluid. Numerical solutions of the unsteady 
Navier-Stokes equations have been obtained by using a finite difference scheme, and 
details are given in Sobey (1980). 

I n  $2 we describe briefly the steady flow through a furrowed channel, and use those 
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FIGURE 1. Separation envelope for steady flow through a furrowed channel; L = 8, U = 2. 

results to predict the quasi-steady solution. In  $3  we give details of the numerical 
calculations of unsteady flow, and compare those results with the quasi-steady 
solution. In $4 we look in further detail at  the occurrence of quasi-steady flow. 

2. Steady flow 
There are two factors governing the motion of a fluid in a furrowed channel. There 

is a pressure gradient in the direction of the flow, and variation in the channel width 
produces additional pressure gradients on the fluid. Where the channel diverges, these 
gradients will oppose the driving pressure gradient and may cause separation at the 
walls of the channel. For a fixed geometry the occurrence of separation is indicated 
by a critical Reynolds number. If the actual Reynolds number of the flow is less than 
the critical value there will be no separation. If the critical value is exceeded then 
the flow separates, and further increases in the value of the Reynolds number result 
in the separated region extending as the vortex grows in size and strength. Variation 
in the geometry alters the value of the critical Reynolds number. 

If the extent of the separated region is plotted against the Reynolds number an 
envelope is obtained, the envelope indicating the region of the channel wall that is 
covered by the separation bubble. This is illustrated in figure 1, where the separation 
envelope for a channel of length L = 8 and depth D = 2 is plotted over the range 
0 < Re < 25. All of our subsequent results in this section and in $3 are for this 
geometry. Thus for example at  a Reynolds number of 10 the separation bubble 
extends over 1.2 < x < 5.7, whilst at a Reynolds number of 30 the extent of the vortex 
is 1 < x c 6.6. The separation envelope characterizes the flow, and we propose to use 
it in our study of unsteady flow. 

We can now use the steady-flow envelope to predict that for quasi-steady flow. In 
unsteady flow we merely use the value of the instantaneous Reynolds number to 
predict the extent of the separated region. The instantaneous Reynolds number is 

(8) 

and in figure 2 we show the separation envelope predicted by quasi-steady theory 
for a peak Reynolds number of 30. It can be seen that the separation envelope is now 
plotted against time, and only one half-cycle is necessary as the flow is periodic. 

Re( t )  = Re, sin 2nt, 
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FIGURE 2. Quasi-steady prediction of separation envelope for oscillatory flow at Re = 30. 

FIGURE 3. Streamlines for flow through a furrowed channel at Re = 75, St = 0.01 : (a) t = 0.1 ; 
(b )  0.25; (c )  0.45; (d )  0.5; ( e )  0.55; (f) 0.75. 

3. Unsteady flow 
Calculations of unsteady flows have shown a very different picture from that 

predicted by quasi-steady flow. Sobey (1980) has shown that a vortex may expand 
during periods of main flow deceleration, and those results are illustrated in figure 3. 
In  the initial part of the cycle, as the fluid is accelerated, it streams through the 
channel. There are two counterbalancing pressure gradients at the entrance to the 
furrow. There is a pressure gradient in the direction of the mainflow which is initially 
proportional to the acceleration q of the fluid. There is also an opposing pressure 
gradient due to the channel expansion which is proportional to q2. As q is decreasing 
and q2 increasing, eventually the overall pressure gradient may cause separation, this 
first occurring on the upstream wall as shown in figure 3 (a). Subsequent increase in 
the flux through the channel increases the size of the vortex until a t  peak flux, shown 
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FIGURE 4. A comparison of the separation envelope calculated for Re = 75 and St = 0.01 (-) 
with the quasi-steady prediction (----). 
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FIGURE 5. A comparison of the separation envelope calculated for Re = 75 and St = 0.001 (-) 
with the quasi-steady prediction (----). 

in figure 3 ( b ) ,  the vortex fills most of the furrow. As the main flow decelerates, the 
vortex expands (figure 3c) ,  and at  the instant of zero flux (figure 3 d )  the vortex 
remains spinning on its own, filling the furrow and half the channel. Figure 3 shows 
half a symmetric channel and so there is another countsr-rotating vortex in the other 
half of the channel. Reversal of the mainflow results in fluid flowing between the 
vortex and the wall, ejecting the vortex from the furrow (figure 3 e ) .  The ejected vortex 
is entrained into the mainstream, and separation again occurs with the formation of 
a counter-rotating vortex, thus repeating the process of vortex formation, growth, 
expansion, ejection and entrainment each half-cycle. 

If we calculate the separation envelope for the flow shown in figure 3 we obtain 
the curve illustrated in figure 4. We have superposed onto this curve the quasi-steady 
prediction for the separation envelope at  the peak Reynolds number of the unsteady 
flow. These curves are quite distinct, and they indicate fundamentally different 
structures for the flow cycle. It is important to note that the flow shown in figure 4 
was calculated at a Strouhal number of 0.01. Sobey (1980) has already shown that 
at  large Strouhal numbers the flow is dominated by viscous effects. The central idea 
of this note is that a t  small Strouhal numbers the flow structure becomes purely 

9 F L M  134 
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FIGURE 6 (a, b) .  For caption see facing page. 

quasi-steady, but that  between the two extremes of Strouhal number there is an 
intermediate region into which flows such as illustrated by figure 3 fall. To give 
credence to this we show in figure 5 a comparison between the separation envelopes 
of a flow a t  a Strouhal number of 0.001 and the quasi-steady prediction of figure 4. 
It can be seen that the degree of agreement has increased and we expect that 
continued reduction in the Strouhal number would increase the agreement further. 
The large amount of computer time required to calculate small-Strouhal-number 
flows makes it impractical to continue this process at this Reynolds number 
(Re, = 75). At smaller Reynolds number quasi-steady flow is encountered a t  a 
Strouhal number for which we can carry out calculations. 

At a Reynolds number of 7 we have been able to compute separation envelopes 
which demonstrate the three regions of Strouhal number. If the Strouhal number is 
large, here St = 0.1, then flow reversal occurs only during the deceleration. This is 
shown in figure 6 (a).  This flow is dominated by viscosity and the flow reversal is akin 
to that in a Stokes layer formed during oscillatory flow over a flat plate. As the 
Strouhal number is decreased, an intermediate range is encountered, where the vortex 
expands during the deceleration (see figure 6 b ) .  If the Strouhal number is decreased 
still further, the vortex decreases in size during the deceleration (figure 6c),  and at 
sufficiently small Strouhal numbers the separation envelope closely resembles the 
quasi-steady prediction (figure 6 4 .  Thus three regimes exist, in which the Strouhal 
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FIQURE 6. Calculated separation envelopes for Re = 7 ;  (a) St = 0.1; ( 6 )  0.01; ( c )  0.004; 
( d )  0.002, ----, the envelope predicted by quasi-steady theory. 

number may take small, intermediate or large values and where the behaviour of the 
flow is fundamentally different. 

These three stages are illustrated at  a Reynolds number of 30 in figure 7, where 
the separation envelopes are shown as the Strouhal number progresses through the 
three regions. The quasi-steady prediction is also shown for comparison. One should 
also observe that as the Reynolds number increases, here from 7 to 30 to 75, the 
Strouhal number for which quasi-steady theory first becomes appropriate decreases 
rapidly. It is this feature that we shall discuss in the next section. It is also worth 
noting that Sychev (1979), in discussing an asymptotic theory of unsteady separation 
on a flat plate, also predicts that the region in which quasi-steady theory applies 
decreases as the Reynolds number increases, as does Cowley (1981), who developed 
an asymptotic theory valid for small indentations of the wall and deduced that the 
Strouhal number alone being small was not enough to guarantee quasi-steady flow. 

4. The occurrence of quasi-steady flow 
In this section we shall define numerically the region in which quasi-steady flow 

can be considered a reasonable approximation to an unsteady separated flow. The 
most obvious criterion is that the vortex which forms during the acceleration should 

9-2 
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FIQURE 7 .  A comparison of the quasi-steady prediction (----) against envelopes calculated at 
Re = 30; (a) St = 0.005; ( b )  0.01; ( c )  0.1. 

decrease in size and disappear during the deceleration. Indeed we shall insist that 
the vortex vanish before viscous flow reversal occurs at the end of the deceleration. 
Otherwise there is the possibility that the vortex will interact with the viscous flow 
reversal. One should also note that the viscous reversal we have mentioned is 
comparable with the reversal of a Stokes layer on a flat plate and results in only weak 
motions. Thus our criterion for quasi-steady flow is that the separation envelope 
should split into two parts, one showing the presence of the inertial vortex and one 
showing viscous flow reversal. We estimate the boundary of the quasi-steady region 
by first combining numerical solutions of the Stokes equations of motion with simple 
quasi-steady ideas and then using numerical solutions of the full Navier-Stokes 
equations of motion. These estimates are qualitatively identical in the region for 
which we have numerical solutions. 

Simple quasi-steady ideas indicate that the vortex will vanish when the instan- 
taneous Reynolds number falls below the critical value for separation of a steady flow. 
If the critical value is Re, then the vortex should vanish when 

Re, sin 2nt = Re,,, (9) 

and, provided that Re,/Re, is not too small, 

Re, t z 0.5- -. 
2nRe, 

The next step is to estimate the time at which viscous effects will cause reverse 
flow. If we examine the Stokes equations for oscillatory flow in a flat channel then 
the stream function is given by 

+c.c. , I sinh By - yB cosh 6 ezrrit 

sinh 6 - 8 cosh 6 

where O2 = 2niRe,St. The wall shear is then 

+c.c. . I 
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FIGURE 8. Calculated values of the time of reversal of Stokes flow for D = 1 and D = 2 
as Re St varies: A, calculated points; ----, lines of constant Rest.  

If Re,St 6 1 the wall shear can be expanded for small 0, 

((1 +&ti  Re, St) e2nit + c.c.} , +ygIg-1 - - - (13) 

(14) 

3 
2i 

so that 
@ y u l y - l  - - 3 sin 2n(t +&Re, St). 

Thus the wall shear will reverse when t+&Re,St = 0.5, or 

t x 0.5-&RePSt. (15) 

Thus, comparing (10) and (15), we might expect that for very shallow indentations 
(in which case Re, is liable to be very large) the criterion for quasi-steady flow would 
be 

St = O(Rep2). (16) 

We have computed solutions of the Stokes equations for oscillatory flow in 
furrowed channels with depths D = 1 and D = 2, and our results are shown in 
figure 8. It can be seen that the time of viscous reversal depends linearly on Re,St for 
small values, although the coefficient varies as the depth increases. In particular, for 
D = 2 viscous reversal will occur at  

t - 0.5-RePSt, (17) 

St < 0.8Rep2. (18) 

so that combining this with (10) and noting that Re, = 5,  

The significance of this is twofold. First it predicts an algebraic decrease in the 
Strouhal number as the Reynolds number increases, so that for even moderate 
Reynolds numbers the Strouhal number at  which the flow becomes quasi-steady is 
liable to be very small, indeed much smaller than we might have anticipated. 
Secondly, we can examine numerical solutions of the full Navier-Stokes equations. 
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FIGURE 10. Schematic diagram of the three flow regions: I, large-Strouhal-number region; 
11, intermediate-Strouhal-number region ; 111, quasi-steady region. The critical Reynolds number 
is also shown. 

These calculations are laborious, and for that reason we show in figure 9 a summary 
of our results. Above the abscissa we have plotted the minimum size of the attached 
region at the wall. Below the abscissa we have plotted the time between disappearance 
of the vortex and viscous reversal. Our criterion is obtained by calculating where both 
curves intercept the axis. This calculation predicts quasi-steady flow if 

St < 0.2 Re+. (19) 
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This is in qualitative agreement with the ideas outlined above, but is smaller since 
one effect of unsteadiness is to delay the disappearance of the vortex. 

We have sketched the three flow regions in figure 10, plotting log Re against log St. 
In  region I, the large-Strouhal-number region, the flow is dominated by viscosity, 
and a reasonable approximation for the solution can be found using the unsteady 
Stokes equations. In  region I1 the Strouhal number takes intermediate values and 
effects such as expansion of the vortex take place during the deceleration of the main 
flow. In  region I11 the flow is virtually quasi-steady, but the Strouhal number is very 
small, and as the Reynolds number increases, the Strouhal number at  the boundary 
of this region becomes algebraically small. 

I am grateful to Dr T. J. Pedley and Dr S. Cowley for their incisive and illuminating 
criticism, particularly of the material in $4. 
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